If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-12x-15=0
a = 6; b = -12; c = -15;
Δ = b2-4ac
Δ = -122-4·6·(-15)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{14}}{2*6}=\frac{12-6\sqrt{14}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{14}}{2*6}=\frac{12+6\sqrt{14}}{12} $
| 3y+-44=2.6 | | 9(8-z)+(2z-7)=0 | | 3y-5=y+17 | | X+0.03x=9000 | | 2(x+4)=2(-8-4)-2x | | (3x-7)+(2x-3)=0 | | 12t-2=5t-36 | | 2×b+8=21 | | 4^(x+1)-5(2^x)+1=0 | | 3=2x+9x | | X=5x+8 | | v-(-15)=33 | | 3x-2=7=9 | | -12/5=x/5 | | 3y-20=7 | | 108.09=c^2 | | y2+13y+36=0 | | Y²+13y+36=0 | | 5a+29=11a-11 | | 31.77=c^2 | | (2850+2920+x)/3=3000 | | 3m+5=7 | | c^2=26.01 | | 3c+18=9c | | c^2=12.41 | | c^2=5128 | | 9x²-125=0 | | c^2=2754 | | -2(7v+5)-6(v+2)=-2 | | x+0.6x=196 | | -14+7z=7 | | -14+7y=7 |